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The effect of a shear flow on convection in a layer 
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In an earlier paper (Walton 1982) we showed that, when a fluid layer is heated 
non-uniformly from below in such a way that the vertical temperature difference 
maintained across the layer is a slowly varying monotonic function of a horizontal 
coordinate x, then convection occurs for x > x,, where x, is the point where the local 
Rayleigh number is equal to the critical value for a uniformly heated layer. 
Furthermore, the amplitude of the convection increases smoothly from exponentially 
small values for x 4 x, and asymptotes to a value given by Stuart-Watson theory 
for x % x,. 

At the present time no solutions of this kind are available for a class of problems 
in which the onset of instability is heavily influenced by a shear flow (e.g. Gortler 
vortices in a boundary layer on a curved wall, convection in a heated Blasius 
boundary layer). In a first step to bridge the gap between these problems and in order 
to elucidate the difficulties associated with the presence of a shear flow, we investigate 
the effect of a (weak) shear flow on our earlier convection problem. We show that 
the onset of convection is delayed and that it appears more suddenly, but still 
smoothly. The role of horizontal diffusion is shown to be of paramount importance 
in enabling a solution of this kind to be found, and the implications of these results 
for instabilities in higher-speed shear flows are discussed. 

1. Introduction 
The stability of fluid flow is determined by considering the effect of an arbitrary 

infinitesimally small disturbance on the flow. If all such disturbances decay with time 
the flow is said to be stable, while if any disturbance grows with time the flow is said 
to be unstable. Often there exists in the problem a dimensionless parameter, denoted 
here by Ra, which characterizes the flow and provides a guide to its stability. 
Typically, if Ra is below a critical value, Ra, say, the flow is stable, while if Ra > Ra, 
it is unstable. The value of Ra, is determined on the basis of linearized perturbation 
theory in which a time dependence of the form eat is assumed. If Re {u} < 0 the flow 
is stable, and if Re{u} > 0 it is unstable. The point Ra = Ra, where Re{u} = 0 or 
dA/dt = 0, where A is the amplitude of a typical perturbed flow component, is known 
as the point of neutral stability or the critical point. 

It is often the case (for example in cellular convection or circular Couette flow) that 
for values of Ra close to Ra, the amplitude A is governed by an equation of the form 

dA 
dt - (Ra-Ra,)A-A3, _-  

t Present address: BP Research Centre, Chertsey Road, Sunbury on Thames, Middlesex. 
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derived on the basis of weakly nonlinear theory (see e.g. Stuart 1971 ; DiPrima 1978). 
Here the amplitude A is assumed to be finite but small. Solutions of (1.1) take the 
form 

A2 = c (Ra  - Ra,) exp {2(Ra - Ra,) t }  

l+Cexp{2(Ra-RaC)t}  ' 
where C is a constant of integration. If the disturbance is generated by an 
infinitesimally small perturbation of the base flow at time t = - co then, since A is 
now finite, we require A+O as t+- co. For Ra < Ra, the only possible solution is 
C = 0, in which case the amplitude remains zero for all time. On the other hand, if 
Ra > Ra, all solutions satisfy the initial condition, and all approach (Ra-Ra,): as 
t +  + co (see figure 1). 

Alternatively one can consider the fate of a small but finite-amplitude disturbance 
imposed a t  some finite point in time, say t = 0. If A ,  denotes the initial amplitude 
then (1.2) gives 

A: C =  
Ra - Ra, - A:' 

If Ra < Ra, the amplitude decays to  zero as t +a, while it approaches the finite value 
(Ra - Ra,); as t + 00 if Ra > Ra, (see figure 2). These two points of view point to the 
same end: Ra, is the critical value of Ra that  separates a regime in which only the 
base flow is present from one in which a weak finite-amplitude secondary flow is also 
present. 

The foregoing considerations apply to a base flow that depends upon only one 
spatial variable, say z,  and are very familiar. But consider now a base flow that varies 
with z and with one other spatial variable, say x, and suppose that the variation with 
x is sufficiently weak that to leading order the linearized perturbation equations 
contain no x-derivatives but merely contain x as a parameter. Then the stability a t  
any point depends only upon local properties of the flow, and we may divide the flow 
regime into a stable part (say x < x,) and unstable part (x > x,) using either criterion 
for (linear) stability discussed above. The location x = x, may be described as a point 
of neutral stability. A complication arises when the basic flow is non-parallel, 
because, as several authors (e.g. Bouthier 1972; Eagles & Weissman 1975) have 
pointed out, consideration of x-derivatives (even at higher order) leads to  the result 
that  different flow quantities have different points of neutral stability. 

There are two approaches towards the variation of the amplitude of the disturbance 
with x in the neighbourhood of x = x, in the steady state. The first has been adopted 
by Hall & Smith (1984), who considered the growth of Tollmien-Schlichting waves 
in a Blasius boundary layer, and by Hall (1982), who considered the development 
of Gortler vortices in a non-parallel boundary layer on a curved wall. These authors 
obtained amplitude equations that took the general form 

dA 
- = X A - A 3 ,  
d X  

where X is proportional to  x -x,. This equation is similar to ( 1 . 1 )  in that the term 
in A3 arises from nonlinear interactions, and the term X A ,  due to the variation in 
a local stability parameter about critical, plays the same role as does (Ra- Ra,) A 
in (1.1). The X-derivative arises through the inertial terms and appears because of 
a base velocity in the x-direction. It is a straightforward matter to demonstrate that 
all solutions of (1.3) become singular at some finite value of X. t  A typical solution 

t The general solution is A = e?X2/[2~$0~tzdt~. where X, is an arbitrary constant. 
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FIGURE 1. The amplitude I A 1 given by (1.2) for Ra > Ra,. 

FIGURE 2. The amplitude I A I given by (1.2) with 1 A I = 1 A,  I 
at t = 0 for (a) Ra < Ra,, (b) Ra > Ra,. 

curve, which asymptotes to Xi as X++ 00, is shown in figure 3. If the point of neutral 
stability is defined, as in the time-dependent problem, to be that point where 
dA/dX = 0, then, since this occurs where the amplitude curve intersects the parabola 
A2 = X, this point is not coincident with that given by linear theory. 

A defect of this solution is that it cannot satisfy the boundary condition that needs 
to be imposed on A if the disturbance is generated by either of the mechanisms 
described above. For suppose that the flow is given either an infinitesimally small 
disturbance maintained for all time or else a small but finite-amplitude disturbance 
at some time t = 0. In both cases the finite-amplitude steady state is zero in the stable 
region far away from the point of neutral stability X = 0. Therefore we require A + O  
as X+- 00, but there is no solution of (1.3) with this property. What this solution 
can describe, though, is the response of the fluid to a finite-amplitude disturbance, 
say A = A* at X = X*, when this disturbance is maintained for all time. This is the 
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FIQURE 3. The amplitude A given by (1.3). 

steady state that one would expect to find downstream of a generator in an 
experiment. While certain flow instabilities are generated in this way and there is 
no doubt that this is a concern of some importance, many other flows develop 
instabilities ‘naturally ’ or ‘spontaneously ’, and it is clear that such instabilities 
cannot be discussed within this framework. Two further points are worth making 
about this solution. First, not only does the point of neutral stability depend upon 
the flow quantity under consideration, but it also depends upon the magnitude and 
location of the generating disturbance. Second, (1.3) is obtained by achieving a 
balance of the three terms by suitable choice of scales of X, and A in terms of E ( 6 l ) ,  
a measure of the relative weakness of the x-variations, and a Reynolds number Re 
(usually % 1)  ( e ,  Re may not be independent in some circumstances). Consequently 
only forced disturbances of a certain magnitude, depending in a precise way on e ,  
Re, can be accommodated by this theory, and the formula is severely restricted. We 
shall return to this point in $4. 

An alternative approach towards the finite-amplitude solution in the neighbourhood 
of the point of neutral stability has been taken by Walton (1982, hereinafter referred 
to as I), who considered the stability of a horizontal layer of fluid of depth h heated 
non-uniformly from below in such a way that the temperature difference between the 
boundaries increased monotonically with a horizontal variable x. Provided that the 
horizontal scale L of the variation in the boundary temperature is much larger than 
h (i.e. e = h / L  6 l),  the leading-order approximations to the perturbation quantities 
depend only upon x as a parameter. Then according to linearized theory the point 
of neutral stability, x,, is defined to be that value of x at which a local Rayleigh 
number Ra, is equal to Ra,, the critical value of Ra for a uniformly heated layer. 
In the neighbourhood of x = x, a steady-state nonlinear amplitude equation similar 
to (1.3) may be derived, except that, since there is no base velocity in the x-direction 
to the order considered, there is no term in dA/dx. Instead, the right-hand side is 
balanced by the leading x-derivatives, which stem from the diffusion terms. For 
longitudinal rolls (aligned with their axes in the x-direction), the amplitude A satisfies 

- XA-A3, 
d4A 
dX4 
-- 

where X oc x-x,. There is no difficulty in obtaining a solution of (1.4) that satisfies 
boundary conditions consistent with an infinitesimal disturbance of the base flow or 
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X 

FIQIJRE 4. The amplitude A given by (1.4). 

a small initial perturbation. The appropriate solution, shown in figure 4, decays to 
zero as X+- 00 and approaches the parabola A2 = X as X++ 00. There is no finite 
value of X a t  which dA/dX = 0 (except in the exponentially decaying ‘tail’), and 
the concept of a point of neutral stability is destroyed. 

The flows discussed by Hall & Smith (1984) and Hall (1982) are quite different from 
that discussed by Walton (1982) in that the former are heavily influenced by a shear 
flow in the x-direction, while none is present in the latter. Moreover, no attempt is 
made in the former studies to take account of diffusion in the x-direction, but it plays 
a major role in the latter work. The questions naturally arise of the effect of a shear 
flow on the configuration discussed by Walton and of the effect of diffusion in Hall 
& Smith’s and Hall’s studies. In  particular, is it possible to find an amplitude equation 
that possesses a solution that decays to zero as X+- 00 even when a shear flow is 
present? As a first step in answering these questions we shall consider the onset of 
thermal convection in a non-uniformly heated layer that is subject to a weak shear 
flow in the x-direction. We restrict our attention to shear-flow Reynolds numbers that 
are in some sense (to be defined more precisely later) small. While we acknowledge 
that the effect of large-Reynolds-number flows may be different, the analysis 
presented here does, it is hoped, point us in the right direction. 

The equations that govern this flow are set up in $2, which also contains a 
discussion of the steady base flow set up by the horizontal variations in the 
temperature distribution. Perturbations to this state are discussed in $3, leading to 
the derivation and solution of the amplitude equations. The results are discussed 
in $4. 

2. Base flow 
An incompressible Boussinesq fluid is contained between horizontal boundaries 

z* = 0, h maintained at temperatures T,* + AT (1 + P(m*/h))  and T,* respectively, 
where A T  > 0, x* is a horizontal coordinate, 8 a small parameter and F a prescribed 
function of ex*/h, restricted here to have positive gradient a t  x* = 0. In  addition, 
a shear flow is generated either by an imposed pressure gradient in the x* direction 
(Poiseuille flow) or by allowing the horizontal boundaries to move with suitable 
velocities in the x* direction (Couette flow). 
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We take AT as a typical temperature scale, h as a lengthscale, ATaghp as a pressure 
scale and h 2 / k  as a timescale, where a is the coefficient of volume expansion, g is the 
acceleration due to gravity and k is the coefficient of thermal diffusivity. The 
instability that forms the subject of this paper is thermal in origin, and it is 
convenient to use a velocity scale derived from buoyancy effects (as in Rayleigh- 
BBnard convection) in scaling the departure of the velocity field from the imposed 
shear flow. The dimensional velocity field u* is written as 

agATh2 
u* = u, U(z)  9* + u, 

V 

where v is the kinematic viscosity, U, is a velocity scale typical of the imposed shear 
flow and U ( z )  and u denote the dimensionless imposed shear flow and augmented 
velocity field respectively. Also, 

T* = %,,+TAT and p* = (vU,p/h)P+ATapghp, where aP/ax = d2U/dz2. 

In dimensionless form the equations governing the flow are 

aT dT 
-+Ra(u-V)T+PTReU-= at ax VZT, 

v - u  = 0, J 

where T ,  p and t are the dimensionless temperature, pressure and time respectively. 
The dimensionless numbers that appear in these equations are defined by 

Pr = v / k  (Prandtl number), 
Ra = ag AT h3/vk 
Re = U,, h / v  

(Rayleigh number), 
(Reynolds number). 

The boundary conditions on T and u are those for constant-temperature no-slip 
boundaries at rest. Assuming a temperature variation on the lower boundary of the 
form described above, we have 

u = O  a t z = 0 , 1 ,  
T = O  a t z = l ,  T = l + F ( e x )  a t z = O .  

In  classical Rayleigh-BQnard convection in which the lower boundary is heated 
uniformly (F = 0) the state that exists prior to the onset of cellular convection is 
motionless and heat is transferred to the upper boundary by conduction alone. 
However, horizontal variations in the thermal boundary conditions (2.2) induce a 
steady circulation which needs to be determined before we investigate the onset of 
cellular convection. 

We assume that the base state is steady (slat = 0), two-dimensional (slay = 0) and 
takes place on the horizontal lengthscale typical of the variation in the temperature 
of the lower boundary. Let us write 

where uB = u B 2 + w B z  and X = EX. 
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Then (2.1) gives 
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(2.3) 

where 

The horizontal scale of the non-uniform heating is assumed to be large compared with 
the height of the fluid layer, which means e Q 1. Also in this paper we shall assume 
that the imposed shear flow is weak, so that Re + 1. Under these conditions a solution 
of (2.3) and (2.2) may be sought by expanding in powers of e and Re. Let us write 

uB = EU, + O(e3, s2 Re), 
TB = T,+ 0(c2, E Re), 

wB = s2w0 + O(e4, e3 Re), 
p ,  = p ,  + 0(e2, E Re). 

Then we find that 

which together with (2.2) gives 

T, = ( l -z ) ( l+F(X)) .  

Also 

which, after some algebra, yields 

w, = WOl(Z) F"(X), uo = -w&) F ' ( X ) ,  

where wol(z) = &2z5-5z4+4z3-z2). 
To leading order the interaction between the shear flow and the buoyancy-driven 

circulation is unimportant. It remains unimportant as long as Re < s-l, so the base 
state determined here is of much wider validity than is needed for our present 
purposes. 

3. Perturbations of the base state 
Rayleigh-BBnard convection occurs in a uniformly heated layer when the Rayleigh 

number Ra exceeds a critical value Ra, and the horizontal wavenumber k is equal 
to k,. For non-slip boundaries it is known that Ra, = 1707.762 and k, = 3.1172. 

When the temperature difference between the boundaries increases slowly but 
monotonically with horizontal distance, as it does here, we may introduce the concept 
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of a 'local' Rayleigh number Ra, defined in terms of the local vertical temperature 
difference by 

Ra, = AT (l  + F ( X ) )  h3 = Ra (1  + F ( X ) ) .  
vk 

It is convenient to locate the origin of the coordinate system at that point on the 
lower boundary where the local Rayleigh number is exactly equal to the critical value, 
which means that Ra, = Ra, (1 + P ( X ) ) .  

Then, if F(0)  = 0 and F is monotonically increasing with X, Ra, 3 Ra, for X 3 0. 
If derivatives with respect to X are ignored we may deduce on the basis of linearized 
perturbation theory that the base state is stable for X < 0 and unstable for X > 0. 
Linearized theory is not, however, adequate to describe the solution in the unstable 
region, for the disturbance grows rapidly and nonlinear effects need to be taken into 
account. The solution in the neighbourhood of X = 0 was given in I for Re = 0. The 
most important feature of the analysis is the adoption of a new horizontal variable, 
intermediate between the 'fast' (x) and 'slow' (X) variables, over which the effects 
of weak nonlinearity are balanced by diffusive terms (in the x-direction) and by terms 
due to the departure of the local Rayleigh number from critical. The amplitude 
equations that result have solutions that increase smoothly from exponentially small 
values towards the stable end of a narrow 'transition ' region near X = 0 and take 
on the square-root behaviour typical of weakly nonlinear theory at the stable end. 
The object of the present calculation is to extend these results to Re + 0 but small. 

As in I we shall focus our attention on perturbations in the form of rolls aligned 
with their axes in the y-direction (transverse rolls) or in the x-direction (longitudinal 
rolls). Let us write 

where P, 8 and p are the perturbed variables. Then U, 8 and p satisfy 

u = uB+u,  T = TB+8, p = p , + p ,  

I 

and 

(3.1) i = -Vp+8$i-v2u, 

as ae 
at ax -+ Ra, [(uB-V) 8 + (E-V) TB] + Re Pr U -  = Vz8, 

V'P = 0, 

u = ~ = o  a t z = 0 , 1  

3.1. Transverse rolls 

It was shown in I that for Re = 0 the amplitude of the transverse mode is O(d) and 
varies in the x-direction on a lengthscale O(h/Es'), so that it depends on the 
intermediate variable X, = e-fX = Ax. Furthermore, the solution is expanded in 
powers of €4, and the amplitude equation arises by considering terms O(s). 

For classical Rayleigh-BBnard convection in the presence of a weak Couette flow, 
Ingersoll (1966) has shown that the critical Rayleigh number for transverse rolls is 
greater by a term in Re2 than that for Re = 0.t 

These results suggest that the effect of the shear flow is of the same order of magni- 
tude as the other effects that contribute to the amplitude equation when I& Re2 - 8 ,  

t A similar result holds for Poiseuille flow (Walton 1985). 
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i.e. Re - 8. Let us write Re = Re,& and suppose for now that Re, - 1. We expand 
the perturbation variables in powers of €4 as follows: 

where E = exp{ik, x-ik, PrRe,dct} and 6 = 0. The wave speed c needs to be 
expanded in powers of e also, i.e. 

c = C0+€'C1+ ..., 
but only co enters our calculations. 

When (3.2) is substituted into the perturbation equations (3.1) and terms in d and 
d are equated to zero, we may determine the terms in d and d in (3.2), and c,,, while 
terms in eE yield the amplitude equation. Details of the calculation are very similar 
to those in I; they are not given here but are available on request from the author. 
The amplitude equation is 

where a, < 0, a2 > 0, a, > 0, a4 < 0 and a5 < 0. Values of at, i = 1, ..., 5,  are given 
in Appendix A. We require A, to decay to zero as XT+- 00, while for X, % 1 the 
nonlinear term is balanced by the term in X, due to the increment of the local 
Rayleigh number above critical, which yields 

Since the coefficients in (3.3) and (3.4) are real we may assume that A, is real also. 
Four of the coefficients in (3.3) may be removed by a canonical transformation 

similar to that used in I. Let 

(3.5) 

~ - S - + X T A T - ~ ~ $  = 0, 
(3.6) 

d2x dAVT - - 
Then we have 

dX& dX, 

with &-+o as xT+-00, Z T  (fZT)+ as XT++ 00. 

Here S = -a5 a$a;( Re,, which is positive since a5 < 0. 
The numerical solution of (3.6) has been given in I for 8 = 0, in which case (3.6) 

is known as the second Painlev6 transcendent. This solution holds for Re, = 0 (which 
is the problem considered in I) and therefore to leading order for Re, Q 1 or Re 4 e k .  
It also holds for Re, - 1 in the special case of antisymmetric Couette flow U = 2-8, 
for which a5 = 0. The amplitude then is exactly the same as when no other flow is 
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FIGURE 5. The amplitude & given by (3.6) for values of 6 
a.3 follows: (a )  0; ( b )  1; ( c )  2; ( d )  3;  (e) 4. 

imposed, and the only effect of the shear flow is to shift the amplitude curve a distance 
(a,/a,) Re; downstream on the scale of XT (or (a4/a3) Re2 6%). This result is to be 
expected once it is known that a shear flow increases the critical Rayleigh number 
from that for uniformly heated Rayleigh-BQnard convection by a factor proportional 
to Re2 for small Re; in this context the onset of convection is delayed until the local 
Rayleigh number has been increased by 0 (Re2), and this requires X - Re2 or 
X, N Reg. 

Equation (3.6) has been solved numerically for a range of values of 6 using the 
methods described in I, and sample results are shown in figure 5. The solution curves 
have a similar shape for all values of 6, but as 6 increases i t  appears that the transition 
region, where the amplitude rises from very small values to close to the parabola 
xT = (;IT);, becomes narrower and is shifted to the right. This description may be 
made more precise as follows. Let us take the value xTo of xT, where d2xT/dx; = 0, 
to be the ‘centre’ of the transition region. For 6 1 we may find an asymptotic form 
for XT by writing 

Then to leading order in 6 we have 

I T  = I T 0  xT1 &l, & = 

with XTo + O  as XTl +- 00, and ATo + (+XTo)4 as .XTl + 00. The scaling adopted here 
is the one that balances all four terms in (3.6) as 6+ 00. 

It seems to be possible to obtain solutions of (3.7) for all values of xTo, one of which 
(XTo = $) gives the analytic solution 

X T ~  = :(I + tMlhfXT1) (~XT~)! .  (3.8) 
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The appropriate value of xTo may be determined, at least in principle, by specifying 
more exactly the asymptotic behaviour of XT0 as TTl + k co by matching with the 
solution outside the transition region. As we show in Appendix B, such a condition 
may only be obtained for xTo < a, but we have been unable to find a solution of (3.7) 
and the more exact boundary condition in that range. We conclude that xTo > f. 
Numerical integration of (3.6) for large values of 8 indicates that &, x 0.30, which 
is at  least consistent with our conclusion based on the asymptotic analysis. 

These results indicate that the horizontal extent of the transition region diminishes 
like F1 as &+a, which means that its thickness is O(d/Re)  on the scale of xT, 
equivalent to Re-l on the scale of x. Also, the transition becomes localized near where 
X, - s2 = Re2/&, which is equivalent to X - Re: or x - Re!/€. Thus as Re increases, 
the onset of convection is delayed (occurs further downstream) and is more sudden. 
When Re is as large as unity, it appears that the onset of convection occurs at an 
0(1) distance downstream (on the scale of X) and that transition takes place on a 
lengthscale 0(1) (on the scale of x), or within a few wavelengths. Under these 
circumstances the intermediate variable XT is indistinguishable from the fast variable 
z, multiple-scaling techniques are no longer applicable, and it is necessary to treat 
the full partial differential equations. This is outside the scope of the present paper. 

3.2. Longitudinal roils 
It was shown in I that for Re = 0 the amplitude of the longitudinal mode is O ( d )  and 
varies in the x-direction on a lengthscale O ( h / d ) ,  so that it depends upon the 
intermediate variable X, = s-tX = e + k .  The solution is expanded in powers of 8, 
and the amplitude equation arises by considering terms O ( d ) .  

It is known that the stability of a uniformly heated layer to longitudinal rolls is 
unaffected by the shear flow, but this is not the case for non-uniform heating. Here 
the leading effect of the shear flow is manifest through advective terms, which are 
proportional to E Re U d/dX or Re U d  d/dX,. For transverse rolls the leading effect 
(again due to advection) appeared through terms in i Re Uk,, which were balanced 
by terms involving the phase speed of the disturbance. Here the leading contribution 
is a real quantity, which cannot be balanced by a phase speed. We shall consider its 
effect on the amplitude equation by writing Re = E: ReL with Re, - 1. 

As in I, we expand the solution in powers of d ;  

where E = exp {ik, y>. The amplitude equation, obtained by considering terms in d E ,  
is 

where a; = a2/4kE, a,, a2 and a, are identical with those in the amplitude equation 
(3.3) for the transverse mode and a, is a negative constant whose value is given in 
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Appendix A. Again the coefficients are real, which leads us to look for solutions in 
which A,  is real. The boundary conditions are 

On applying the transformation 

and writing Re, = - as1 a$ at 6, we obtain 

(3.10) 

The numerical solution of (3.10) has been given in I for S = 0. This solution holds 
for Re, -g 1 or Re -g ei, end also for antisymmetric Couette flow ( U  = z--f),.in which 
case a, = 0. There is no difficulty in obtaining solutions of (3.10) subject to the 

provided S is not too large. As S increases, the transition region is shifted to larger 
values of Z, and becomes steeper just as for the transverse mode, but we have been 
unable to find a solution of (3.10) and (3.11) for 8 greater than a critical value a,, 
which we calculate to be 1.61. Three different numerical methods have been employed 
(expansion in Tchebycheff polynomials, shooting from either end or both ends of the 
range, and finite differences) and all are in close agreement : there is no solution for 

I n  order to  find a way out of this impasse it is necessary to  return to the formulation 
of the perturbation problem and re-examine the assumptions upon which i t  is based. 
The weakest part of the structure is the assumption that longitudinal rolls set in with 
a wavelength equal to that at the onset of unmodulated BBnard convection. Now if 
we consider a disturbance with wavenumber k $; k ,  and such that 1 k -  k,  I = 6k then, 
for 6k small, the critical Rayleigh number needs to be increased by a term 
proportional to  (8k)2.  This means that a disturbance of this kind cannot occur until 
X - (6k)2.  Clearly if we are primarily concerned with the mode that appears first, 
in the sense that it appears at the smallest possible value of X, then we need t o  choose 
the mode that minimizes (6k)2.  For 6 < S, we have obtained solutions with 6k = 0, 
and that is therefore the preferred mode. For S > S, there is no solution for 6k = 0 
and we are led to consider solutions in which 6k 4 0. 

Small departures of k from k, may easily be encompassed within the present theory. 
If 1 6k I < d we find that the amplitude equation (obtained by considering terms O(&) 
remains unchanged from that given earlier for 6k = 0, but new terms appear in the 
equation if 6k - 8. Let us write 

k = , k , + d k , .  

S >  1.61. 
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FIGURE 6. The minimum value of I /3I (points marked x ) for which (3.12) has solutions as a function 
of 8. The values of xLo are denoted by 0. The asymptotes shown are I/3Imin = 1.3238 and 

= 0.24d respectively. The variation of I /3 lmin with S for 6 in [0,3] is shown in the inset. 

Then the expansion in powers of & remains as above except that in the equations 
satisfied by GI, el, etc. : 

As far as the amplitude equation is concerned, this means that we need to replace 
d2/dX; with d2/dXE-2k, k,. The resulting amplitude equation is, after rescaling, 

- 
d4AL dz,  d2K 

dx, dX, dX; 
-- , ,+S-- /3d++K;  = 0, (3.12) 

where 

and 

B = 4k, k, (a; a3l)f 

x, = (a; a;l)i [IL +1#]. 

The form of the scaling indicates that the solution is shifted to larger values of X, 
by a term proportional to ki, in agreement with our earlier discussion. In order to 
find the mode that appears at the lowest possible value of X,, we need to find the 
minimum value of kl (and hence 181) for which solutions exist to (3.12) and the 
appropriate boundary conditions (3.11). 

Numerical integration reveals that I PIrnin = 0 for S < S, = 1.61 and increases 
monotonically with 6 as shown in figure 6 for 6 > 6,. Sample solutions of (3.12), shown 
in figure 7, demonstrate that once again the onset of the disturbance occurs at larger 
values of XL as S increases and the transition regions becomes narrower. For S % 1 
i t  appears that all five terms in (3.12) are important. A balance may be achieved by 
writing 

E L  = $XLo+S3xL1, 2, = &A&, I B lmin = I /Io 18, 
11 P L P  154 
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1-- -- - - I 

5 10 15 
I XL 

- 5  

FIQURE 7. The amplitude xL given by (3.12) for values of 8 
as follows: (a) 0;  ( b )  2; (c) 4; (d) 6;  ( e )  8;  v) 10. 

3 -  

2 -  

- 5  5 10 15 20 

FIQURE 8. The amplitude xL for 8 =  10 and various boundary conditions: (a )  xL = 0.5, 
dxL/dxL = -0.5 at xL = - 1.0; ( b )  xL = 0.5, dxL/dxL = -0.4 at rL = -5.0; (c) xL+O, 
dxL/dxL+O aa xL+-co. In (a) and ( b )  we have used p = 0, and in (c) /3 = 4.93, the minimum 
value of 1 for which solutions of this kind exist. 

in which case XLo satisfies 

G 
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The boundary conditions on xLo are 
- 

Numerical integration of (3.12) shows that xLo = 0.24 and Po = 1.32. 
These results indicate that the horizontal extent of the transition region diminishes 

like 8-i as 6-t 00, which is equivalent to et Re-: on the scale of xL or Re-: on the scale 
of z. As for transverse rolls, when Re is as large as unity the transition takes place 
within a few wavelengths, and the method of multiple scales is no longer applicable. 
Also the wavenumber of the disturbance increases like dd, or Re!, which means that 
the assumption that the wavenumber remains close to  critical also breaks down when 
Re - 1.  Furthermore, transition occurs at a point X - Re! for 6 p 1. 

4. Discussion 
We have shown that a weak shear flow has three main effects on the onset of 

convection in a non-uniformly heated layer. First, any significant growth of convection 
is delayed, in that it occurs further downstream. Secondly, the onset is more sudden, 
in that the rise in amplitude from a very small value to a value close to the asymptotic 
form far downstream takes place over a narrower interval. Thirdly, in the case of 
longitudinal rolls the wavenumber is perturbed away from the critical value that 
holds in the absence of a shear flow. For shear-flow Reynolds numbers of the 
magnitude considered here the onset of the longitudinal mode occurs at smaller values 
of X than the transverse mode. 

Our analysis can take into account shear-flow Reynolds numbers Re 5 1.  The 
solutions for Re - 1 and Re 2 1 remain to be found, and may well be quite different 
in structure from those discussed here. Our results suggest that for larger values of 
Re the onset of convection occurs at a considerable distance downstream from the 
point of neutral stability based on linear theory, and that the onset takes place over 
a very short distance. It seems likely that a much fuller set of elliptic partial differ- 
ential equations needs to be solved in this region. 

An important feature of our results is that we have been successful in obtaining 
solutions that satisfy the boundary conditions that hold when the instability is 
triggered by an infinitesimal disturbance or by an initial small but finite-amplitude 
disturbance. Our formulation also allows us to treat a problem analogous to that 
posed by Hall & Smith (1984) and Hall (1982), concerning the effect of a disturbance 
of small but finite amplitude maintained at some point X = X*, say, for all time. If 
we follow those authors in assuming that the effects of diffusion in the X-direction 
may be neglected, then a scaling that leads to an equation of the form (1.3) is 
X - (E Re)i, A - ( E  Re$ An examination of the leading terms neglected in this 
approximation reveals that it remains valid only for Re % d in the case of a transverse 
disturbance and for Re %- d for a longitudinal disturbance. In other words, diffusion 
in the X-direction may be neglected only if the shear flow is sufficiently strong or 
the rate of variation in the thermal forcing sufficiently weak. Our analysis allows us 
to extend this restrictive parameter range to include Re 5 d and Re 5 d for 
transverse and longitudinal disturbances respectively, in which case diffusion in the 
X-direction is as important as the other terms in (1.3). Sample results, with A, dA/dX 

11-2 
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prescribed a t  some station X = X*, are shown in figure 8. A noteworthy feature is 
that, although the point of neutral stability is shifted slightly to larger values of X 
than predicted on the basis of linear theory, the shift for O(1) values of the scaled 
amplitude of the disturbance is very much less than for an infinitesimal value. These 
results suggest that the onset of convection can be delayed a considerable distance 
downstream by keeping the amplitude of the forced disturbance small. In  this respect, 
observations of the onset of convection due to a finite forced disturbance are a poor 
guide to the true stability properties of the flow. 

Appendix A. Numerical values of the coefficients in the amplitude 
equations 

For the transverse mode the amplitude satisfies (3.3) in which 

F'(0) 
Rc 

a1 = -4.5118, a2 = 1.8163, a3 = 12.143-, 

a 4  =\- (0.5024P~+0.4246P1.3+2.635Pr2+0.0243Pr+0.0253)10 

- (3.9810Pr2+0.9017Pr+0.4586) lop3 (Couette flow), 

(0.6178Pr+0.3162)2 
(Poiseuille flow), 

(Couette flow, U = z- ; ) ,  

a5 = - (0.1581 +0.3089Pr) (Couette flow, U = z ) ,  

(0.1862 + 0.5425Pr) - 2k30-2(0.0046P~2 + 0.2970Pr- 0.0005) 
0.6178Pr + 0.3162 

(Poiseuille flow). 

Also, the leading approximation to  the wave speed c, is zero for antisymmetric 
Couette flow and !j for Couette flow with U = z ;  in both cases co is equal to  the speed 
of the shear flow a t  the midpoint of the fluid layer. For Poiseuille flow we find that 

(D 

0.1862 + 0.5425Pr 
0.3 1 62 + 0.6 1 7 8Pr ' 

c, = 

For the longitudinal mode the coefficient a6 in (3.9) takes the values 

(Couette flow, U = z-f), 
(0.1581 +0.3089Pr) (Couette flow, U = z ) ,  

- (0.1862 +0.5425Pr) (Poiseuille flow). 

Appendix B. Solution of (3.6) for 6 9 1 

The solution is divided into three regions: (a) XT 4 XToS2, ( b )  IXT-XT,S21 4 1 
and (c) IT 9 XT,S2. The transition region (b) has already been discussed in $3.  In 
region (a) the amplitude xT is small, and we may neglect the nonlinear term. The 
truncated version of (3.6) has the solution 

AT = const x exp ($3XT) Ai (as2 - XT) (B 1 )  

where Ai is an Airy function. For S fixed, xT+O as XT+-w. I n  terms of the 
transition-region variable XT we have 

AT = const x exp (+S3xT,+fXT1) Ai ( S ( ~ - x T o ) - S - l ~ T , ) ,  
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where xT1 < 0. The limit S-+ co clearly depends upon the sign of a- xT0. If xTo < a 
we find that 

while if xTo > f we find that 

(B 2) 

(B 3) 

XT - e ~ p { [ ~ + ( + - X ~ , ) ~ ] ~ ~ ~ )  asS+co, 

X T  - exp ($KTl) cos [(ZT,-+)t I T l  +p(S)l as a+ 00. 

Equation (B 2) or (B 3) provides the boundary condition for (3.7) as xTl +- 00. 

Similar expressions may be obtained in the same way for xTl -+ 00. It is clear now 
that (3.8) is not the required solution, for it predicts that XT - exp$xTl as xTl +- 00, 

while, with rTo = $, (B 2) demands xT - exp$zTT1 as xTl+- CO. We have been 
unable to find a solution of (3.7) with boundary conditions in the form (B 2) 
appropriate to XTo < f .  

The difficulty with xTo > + arises from the asymptotic behaviour of (B 1) and the 
corresponding solution with Ai replaced by Bi. These expressions differ only by an 
0(1) term in the phase B ( S )  in (B 3). Since B ( S )  - S3 we cannot detect this difference 
to leading order in 8, and we are unable therefore to specify boundary conditions on 
XTo in the transition region that distinguish between (B 1) and the corresponding 
solution with Ai replaced by Bi. 
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